Fields
The field type corresponds to the native field type of the proving backend.
The size of a Noir field depends on the elliptic curve's finite field for the proving backend adopted. For example, a field would be a 254-bit integer when paired with the default backend that spans the Grumpkin curve.
Fields support integer arithmetic and are often used as the default numeric type in Noir:
fn main(x : Field, y : Field) {
let z = x + y;
}
x
, y
and z
are all private fields in this example. Using the let
keyword we defined a new
private value z
constrained to be equal to x + y
.
If proving efficiency is of priority, fields should be used as a default for solving problems.
Smaller integer types (e.g. u64
) incur extra range constraints.
Methods
After declaring a Field, you can use these common methods on it:
to_le_bits
Transforms the field into an array of bits, Little Endian.
pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {}
example:
fn test_to_le_bits() {
let field = 2;
let bits: [u1; 8] = field.to_le_bits();
assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);
}
to_be_bits
Transforms the field into an array of bits, Big Endian.
pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {}
example:
fn test_to_be_bits() {
let field = 2;
let bits: [u1; 8] = field.to_be_bits();
assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);
}
to_le_bytes
Transforms into an array of bytes, Little Endian
pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {
example:
fn test_to_le_bytes() {
let field = 2;
let bits: [u8; 8] = field.to_le_bytes();
assert_eq(bits, [2, 0, 0, 0, 0, 0, 0, 0]);
assert_eq(Field::from_le_bytes::<8>(bits), field);
}
to_be_bytes
Transforms into an array of bytes, Big Endian
pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {
example:
fn test_to_be_bytes() {
let field = 2;
let bits: [u8; 8] = field.to_be_bytes();
assert_eq(bits, [0, 0, 0, 0, 0, 0, 0, 2]);
assert_eq(Field::from_be_bytes::<8>(bits), field);
}
to_le_radix
Decomposes into an array over the specified base, Little Endian
pub fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {
// Brillig does not need an immediate radix
if !crate::runtime::is_unconstrained() {
crate::assert_constant(radix);
}
self.__to_le_radix(radix)
}
example:
fn test_to_le_radix() {
let field = 2;
let bits: [u8; 8] = field.to_le_radix(256);
assert_eq(bits, [2, 0, 0, 0, 0, 0, 0, 0]);
assert_eq(Field::from_le_bytes::<8>(bits), field);
}
to_be_radix
Decomposes into an array over the specified base, Big Endian
pub fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {
// Brillig does not need an immediate radix
if !crate::runtime::is_unconstrained() {
crate::assert_constant(radix);
}
self.__to_be_radix(radix)
}
example:
fn test_to_be_radix() {
let field = 2;
let bits: [u8; 8] = field.to_be_radix(256);
assert_eq(bits, [0, 0, 0, 0, 0, 0, 0, 2]);
assert_eq(Field::from_be_bytes::<8>(bits), field);
}
pow_32
Returns the value to the power of the specified exponent
fn pow_32(self, exponent: Field) -> Field
example:
fn main() {
let field = 2
let pow = field.pow_32(4);
assert(pow == 16);
}
assert_max_bit_size
Adds a constraint to specify that the field can be represented with bit_size
number of bits
pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {
example:
fn main() {
let field = 2
field.assert_max_bit_size(32);
}
sgn0
Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x ∈ {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.
fn sgn0(self) -> u1
lt
Returns true if the field is less than the other field
pub fn lt(self, another: Field) -> bool